Signal Detection for Molecular Communication: Model-Based vs. Data-Driven Methods

نویسندگان

چکیده

Multi-scale molecular communication (MC) employs the characteristics of information molecules for exchange. The received signal in MC inevitably encounters severe inter-symbol interference and signal-dependent noise due to stochastic diffusion mechanism. Focusing on critical detection MC, first this article reviews commonly used model-based detectors exposes their limitations practical implementation. Then emerging data-driven that can make up some deficiencies are presented. Despite black-box nature detectors, explainable artificial intelligence be further investigated performance improvement transparency trust. Finally, open research issues future directions receiver design discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

A Generalized Strength-Based Signal Detection Model for Concentration-Encoded Molecular Communication

In this paper, a generalized strength-based signal detection model for Concentration-Encoded Molecular Communication (CEMC) has been presented. The generalized strength-based signal detection problem in diffusion-based CEMC system has been investigated in the presence of both diffusion noise and intersymbol interference (ISI). Amplitude-shift keying (ASK)modulated CEMC system has been considere...

متن کامل

Data-driven signal detection and classification

In many practical detection and classi cation problems, the signals of interest exhibit some uncertain nuisance parameters, such as the unknown delay and Doppler in radar. For optimal performance, the form of such parameters must be known and exploited as is done in the generalized likelihood ratio test (GLRT). In practice, the statistics required for designing the GLRT processors are not avail...

متن کامل

Combining Data-driven and Model-driven Methods for Robust Facial Landmark Detection

Facial landmark detection is an important but challenging task for real-world computer vision applications. This paper proposes an accurate and robust approach for facial landmark detection by combining data-driven and modeldriven methods. Firstly, a fully convolutional network (FCN) is trained to generate response maps of all facial landmark points. Such a data-driven method can make full use ...

متن کامل

Prediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods

This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Communications Magazine

سال: 2021

ISSN: ['0163-6804', '1558-1896']

DOI: https://doi.org/10.1109/mcom.001.2000957